martes, 24 de marzo de 2015

SEMANA 03

EL MAGMATISMO

Es una mezcla de material rocoso fundido, de composición preferentemente silícea que contiene gases, agua y minerales sólidos dispersos. Las rocas formadas por el enfriamiento de los magmas se llaman rocas ígneas. Si su enfriamiento y consolidación se producen en el interior de la tierra, reciben el nombre de plutónicas. Si ocurren en la superficie terrestre se llaman rocas volcánicas.


Generación del magma:

Se generan por la fusión total o parcial de rocas profundas de la corteza inferior y manto superior. Los materiales de estas zonas se encuentran en condiciones cercanas al punto de fusión, siendo lo más probable que sólo una pequeña fracción del material se encuentre fundida y que la mayor parte de las rocas siga en estado sólido, a este fenómeno se denomina fusión parcial.

La fracción fundida es un líquido menos denso que la fracción sólida a través de la que asciende. El magma se almacena en bolsas denominadas cámaras magmáticas a profundidades menores. Los factores físicos que condicionan la fusión de un magma son la presión y la temperatura.
  • Presión: Se debe al peso de los materiales que tiene encima y aumenta proporcionalmente a su espesor y densidad. Un aumento de la presión provoca un aumento del punto de fusión de las rocas o minerales.
  • Temperatura: Se calcula que la temperatura en zonas profundas de la corteza continental debe oscilar entre 500º y 700º ºC, las temperaturas en el manto son mayores, calculándose que a unos 100 Km. de profundidad será del orden de los 1.500 º C. Para que se genere un magma es necesario que suba la temperatura o que descienda la presión.

Zonas de consolidación del magma:

El magma se consolida a diferentes niveles de profundidad de la corteza terrestre debido a la temperatura, presión y composición del magma, así como también debido a la constitución de las rocas preexistentes en la corteza.

Consolidación sobre la superficie
En el caso de que el magma llegue a la superficie, la temperatura baja súbitamente y entonces se forman las lavas. Estas dan origen a las rocas ígneas extrusivas o volcánicas.

Consolidación debajo de la superficie
En el caso de que el magma sin llegar a la superficie se enfríe durante su recorrido de ascenso, la temperatura baja en forma gradual y se forman los primeros cristales hasta llegar al punto en que el magma, se solidifica. Este da origen a las rocas ígneas intrusivas, denominadas:

  • Si la consolidación del magma ocurre a poca profundidad, origina a las rocas ígneas plutónicas.
  • Si la consolidación del magma ocurre a profundidades someras origina las rocas ígneas hipabisales.
  • Si la consolidación del magma ocurre en el interior de las fisuras o resquebrajaduras origina las rocas ígneas filoneanas.


Fases de la consolidación de un magma:

Se producen tres fases sucesivas delimitadas por intervalos de temperatura y que presentan caracteres especiales.

  • Fase ortomagmática: Constituye la fase principal de la cristalización magmática. Abarca desde el origen del magma hasta que éste desciende su temperatura hasta los 500 ºC.


  • Fase pegmatítico-neumatolítica: Tras la fase ortomagmática queda un líquido residual rico en volátiles, a partir de este líquido se produce la cristalización de micas, feldespatos y cuarzo y se originan las rocas llamadas pegmatitas. Su temperatura media es de 500 ºC aproximadamente.


  • Fase hidrotermal: Entre 400 y 100 ºC que una solución residual rica en agua, cuya fase más importante es la líquida, que escapa por las grietas y cavidades de las rocas cercanas. Parte de estas soluciones pueden llegar a la superficie en forma de géiseres, fuentes termales o fumarolas.

Magmatismo extrusivo:

Es el proceso por el cual el magma es expulsado a la superficie terrestre a través de conos volcánicos o fracturas de las rocas preexistentes, originando corrientes de lava y material piroclastico. Por esta razón se le denomina Rocas Volcánicas.

Definición del Volcán:
Es la acumulación de productos magmáticos alrededor de un ducto central. Visto en conjunto presenta forma de cono, colina o montaña con características muy particulares.

Partes del volcán
En la cima se encuentra el cráter en el interior la chimenea y en el fondo la cámara magmática.
  • Cráter: Es una depresión en forma de embudo ubicada en el extremo superior del cono del volcán o en la cima de una colina o de una montaña. Es el extremo de la chimenea.
  • Chimenea: Es el ducto por donde salen o expelen los materiales magmáticos. Une al cráter con la cámara magmática.
  • Cámara magmática: Es una cavidad o receptáculo ubicado a profundidad que contiene al magma.
Erupciones volcánicas: Las erupciones volcánicas presentan las siguientes características:

Tipos de erupciones
Las erupciones volcánicas pueden ser de dos tipos:
  • Vulcanismo de tipo explosivo: Es cuando en determinados instantes predomina la expulsión de material piroclástico.
  • Vulcanismo de tipo tranquilo: Es cuando la eyección del material volcánico no produce estruendo.

Frecuencia de las erupciones
La clase e intensidad de la actividad volcánica es continua desde su aparición hasta su extinción. Son sus efectos los que aparecen intermitentemente. Estos efectos pueden variar o tornarse cíclicos.

Efectos de erupciones: Las primeras etapas de una erupción se caracterizan generalmente por:
  • Terremotos preliminares
  • Agrietamiento del terreno
  • Aparición de manantiales calientes
  • Desagüe de los lagos

Después de la erupción, la condensación del vapor de agua de la atmósfera va expulsada con las erupciones, suelen producir lluvias torrenciales.

Clases de erupciones: Las erupciones volcánicas de tipo central se clasifican en:
  • Erupciones hawaiano: Presentan las características siguientes: Las erupciones volcánicas son de régimen tranquilo, las lavas son de composición básica, escasez de gases y la temperatura es alta (llega a 1200ºC).
  • Erupciones estromboliano: Presentan las características siguientes: Las erupciones volcánicas son de tipo explosivo con régimen de explosiones espaciadas de ritmo regular, las lavas son de composición básica, las lavas tienen poca movilidad, las lavas tienen poco gas y la temperatura es alta (aprox. 1000ºC).
  • Erupciones Etna-vesubiano (vulcaniano): Presentan las características siguientes: Las erupciones volcánicas son de tipo explosivo con régimen de explosiones violentas y reiteradas, la expulsión del material piroclástico va acompañada de abundante gas y las lavas son de naturaleza ácida a intermedia viscosas y de escasa movilidad.
  • Erupciones peleanos: Presentan las características siguientes: Las erupciones son de tipo explosivo con régimen de explosiones violentas y reiteradas, ocurrencia de grandes explosiones de gases, expulsión abundante de material piroclástico, las lavas son de excepcional viscosidad, y el descenso de los materiales eyectados forman las denominadas “nubes ardientes”.
  • Erupciones pliniano: Presentan las características siguientes: Las erupciones son de tipo violentas y la expulsión de gases que se elevan a grandes alturas donde forman un techo de “nubes globulares”.
Material proyectado en las erupciones: Las erupciones volcánicas están constituidas por materiales sólidos, líquidos y gaseosos.

Material sólido: Es aquel material que después de haber sido erupcionado cae sobre la superficie en estado sólido. Estos materiales son conocidos también como “piroclástico”.

Los piroclastos se encuentran conformados por los componentes siguientes:

- bloques y bombas > de 32 mm

- lapilli 32 – 4 mm- ceniza 4 – 1/400 mm

- polvo < de 1/400 mm

Los depósitos de estos materiales conforman a las brechas y tufos.

Material líquido: Es la lava misma pero en estado líquido constituida por una mezcla de rocas fundidas. Se clasifican en lavas ácidas, básicas (y ultra básicas) e intermedias.

Material gaseoso: Está conformado principalmente por vapor de agua (60 a 90%), bióxido de carbono, nitrógeno y anhídrido sulfuroso, y pequeñas cantidades de hidrógeno, monóxido de carbono, azufre y compuestos de cloro, flúor y boro; entre otros.

Erupciones de fisura: Las erupciones de fisura consisten en la llegada del magma a la superficie a través de una larga grieta. A diferencia de los volcanes centrales, en los que el magma sale a la superficie a través de la boca del cono del volcán.

Presenta las características siguientes:

  • Las grietas denominadas también fisuras, fracturas, cuarteadoras, resquebrajaduras por donde sale el magma, son muy largas partiendo dela parte profunda de la corteza terrestre.
  • Estas fisuras son de tamaño variable.
  • Los derrames de magma ocurren al extremo de dichas fisuras pudiendo ser la parte lateral del mismo cono volcánico, cualquier parte de la superficie continental, o cualquier parte del fondo marino, donde se encuentren estas grietas.
  • No necesariamente requieren la presencia de un volcán para ocurrir.
  • El magma que brota es muy fluido y basáltico.

En la era terciaria, estas erupciones de fisura emitieron oleadas de basalto que cubrieron grandes extensiones en diferentes partes del mundo.


Magmatismo intrusivo

Es la ascensión del magma desde los profundos focos de las regiones subcorticales y penetra en la corteza terrestre sin alcanzar su superficie y se solidifica a diferentes profundidades.

La fisura está señalada hoy por una línea de pequeños conos formada en las fases finales de la erupción a través de una discreta actividad explosiva.

Roca plutónica se forma cuando un volumen grande de magma se cristaliza y constituye un cuerpo grande de roca magmática en la profundidad. Durante su formación el enfriamiento es muy lento, permitiendo así el crecimiento de grandes cristales de minerales puros y resultando una textura heterogénea, granulosa, homogénea. El granito, el gabro, la sienita, la diorita, la peridotita y la tonalita son ejemplos de rocas plutónicas.

Las rocas plutónicas son las más importantes. Dominan abrumadoramente la composición de la Tierra, estando constituida por ellas la totalidad del manto terrestre y la mayor parte del volumen de la corteza.

SILL: Son plutones tabulares y concordantes, cuya potencia varia de centímetros asta metros. Se diferencia de una lava enterrada en que es más moderna que las rocas encajonantes; además, sus superficies son más regulares.

DIQUES: Son plutones tabulares discordantes formados por la intrusión de magma atreves de fracturas que corta a las rocas encajonantes. Su potencia varía entre centímetros a metros, y s u longitud puede alcanzar varios kilómetros.

BATOLITOS: Son grandes plutones masivos y discordantes, mayores de 100 km2 cuyo tamaño aumenta con la profundidad y que hoy están en superficie por consecuencia de la erosión de las rocas que las cubrían inicialmente. Su parte superior es un domo de donde se proyectan diques y otros cuerpos ígneos menores.

LACOLITOS: Son plutones masivos y concordantes en forma lenticular, que deforma los estratos superiores, cuya base es aplanada y presenta una convexidad en el techo.

STOCK: Son plutones masivos y discordantes, el tamaño de sus afloramientos son menores a los 100 km2.

Vulcanismo en el Perú:

El vulcanismo andino tiene profundas relaciones con el plutonismo andino en general. Las cumbres que sobresalen y dominan las punas, son estructurales unas y conos volcánicos otras. Dollfus, considera que algunos picos de los andes centrales, pueden ser “agujas volcánicas” que emergieron por sobre los relieves existentes; sin embargo, en los casos por el estudiado:

En la zona sur del país existe un alineamiento montañoso con numerosos conos volcánicos, aproximadamente entre el paralelo 15º hasta la frontera con Chile.

Entre los volcanes más conocidos se citan a los siguientes:

  • Yucamane (5,497 msnm) Tacna
  • Tutupaca (5,815 msnm) Tacna
  • Ubinas (5,872 msnm) Moquegua
  • Misti (5,821 msnm) Arequipa
  • Ampato (6,310 msnm) Arequipa
  • Solimana (6,117 msnm) Arequipa
  • Sabancaya (5,976 msnm) Arequipa.


La mayoría de los volcanes de este cordón se encuentran fuertemente erosionados por la glaciación pleistocena, mas no así el Misti, Ubinas y Yucamane, considerados modernos post glaciales. Todos están en estado de extinción, apagados, a excepción del Misti, Tutupaca, Sabancaya que aparentemente están en una fase fumarolita de posible extinción. Existe una zona de conos aislados que se extienden por este cordón, siendo los más representativos los siguientes:
  • Coila (4,950 msnm)
  • Ajana (5,100 msnm)
  • Mesa Pillone (4,700 msnm)
  • Andahuaca (4,720 msnm)
  • Misti (5,821 msnm).
La elevación de estos conos comienza aproximadamente a los 3,000 msnm y de todos ellos el más conocido es el volcán Misti, cuya base tiene más o menos 20 km. de diámetro; su cráter tiene paredes escarpadas de 150 m. de altura y sus derrames han fluido hacia el sur de Arequipa habiendo descendido por escurrimiento superficial hasta los 2,500 msnm.


El volcán Ubinas se encuentra en el Dpto. de Moquegua, en la Provincia General Sánchez Cerro; tiene una altura de 5,872 msnm y una elevación de 1,000 m. sobre los terrenos adyacentes; su cráter tiene aproximadamente 1,000 m. de diámetro y una profundidad de 500 m. Su estructura es típica de estrato volcán. Su actividad parece estar en extinción y actualmente del cráter salen fumarolas sulfurosas que siguen depositando azufre nativo. Una de las últimas grandes explosiones según J.Polo (1889) ocurrió el 7 de Febrero de 1559.


SEMANA 02

GEOLOGÍA COMO CIENCIA DE LA TIERRA

Las ciencias de la Tierra o geociencias son las disciplinas de las ciencias naturales que estudian la estructura, morfología, evolución y dinámica del planeta Tierra. Constituyen un caso particular de las ciencias planetarias, las cuales se ocupan del estudio de los planetas del Sistema Solar.

Objetivos:
  • Averiguar su historia y su evolución e intenta comprender la causa de los fenómenos endógenos y exógenos.
  • Estudiar a la Tierra como un sistema compuesto por numerosas partes interactuantes o subsistemas.
  • Emplear un enfoque interdisciplinario para resolver los problemas ambientales globales.
Importancia:
  • En la actualidad las ciencias geológicas están adquiriendo mayor importancia para enfrentar la escasez de materias primas y energéticas y los problemas ambientales.
  • En la ingeniería ambiental es importante porque va abordar el estudio de los procesos de la hidrósfera y de la litósfera.
Tiempo Astronómico:
La astronomía es una de las ciencias más antiguas. En los albores de la civilización, el hombre se dio cuenta que la repetición regular de los fenómenos celestes constituía el reloj natural de sus múltiples actividades: la jornada de labor se medía por la salida y la puesta del sol; el mes, por el ciclo lunar; las siembras, las cosechas y el trabajo agrícola en general eran regulados por la aproximación de las estaciones. Por este conjunto de razones la astronomía fue, en todas las civilizaciones del pasado, una ciencia tanto al servicio del poder civil como del religioso.

Sistema solar:
  • El Sistema Solar es un sistema planetario en el que se encuentra la Tierra. Consiste en un grupo de objetos astronómicos que giran en una órbita, por efectos de la gravedad, alrededor de una única estrella conocida como el Sol de la cual obtiene su nombre.
  • Se formó hace unos 4600 millones de años a partir del colapso de una nube molecular que lo creó. El material residual originó un disco circumestelar protoplanetario en el que ocurrieron los procesos físicos que llevaron a la formación de los planetas.
  • Se ubica en la actualidad en la Nube Interestelar Local que se halla en la Burbuja Local del Brazo de Orión, de la galaxia espiral Vía Láctea, a unos 28 mil años luz del centro de esta.
  • La mayor parte de su masa, aproximadamente el 99,85%, yace en el Sol. De los numerosos objetos que giran alrededor de la estrella, gran parte de la masa restante se concentra en ocho planetas cuyas órbitas son prácticamente circulares y transitan dentro de un disco casi llano llamado plano eclíptico.
  • Los cuatro más cercanos, considerablemente más pequeños Mercurio, Venus, Tierra y Marte, también conocidos como los planetas terrestres, están compuestos principalmente por roca y metal. Mientras que los planetas externos, gigantes gaseosos nombrados también como "planetas jovianos", son sustancialmente más masivos que los terrestres.
  • Los dos más grandes, Júpiter y Saturno, están compuestos principalmente de helio e hidrógeno; los gigantes helados, como también se suele llamar a Urano y Neptuno, están formados mayoritariamente por agua congelada, amoniaco y metano.
  • El Sistema Solar es también el hogar de varias regiones compuestas por objetos pequeños. El Cinturón de asteroides, ubicado entre Marte y Júpiter, es similar a los planetas terrestres ya que está constituido principalmente por roca y metal, en este se encuentra el planeta enano Ceres.
Características generales:

Según sus características, los cuerpos que forman parte del Sistema Solar se clasifican como sigue:

El Sol: una estrella de tipo espectral G2 que contiene más del 99,98 por ciento de la masa del sistema. Con un diámetro de 1.400.000 km, se compone de un 75% de hidrógeno, un 20% de helio y 5% de oxígeno, carbono, hierro y otros elementos.


Los planetas: Divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos, mientras que Urano y Neptuno suelen nombrarse gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.


Los planetas enanos son cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente como para haber atraído o expulsado a todos los cuerpos a su alrededor. Son: Plutón (hasta 2006 era considerado el noveno planeta del Sistema Solar, Ceres, Makemake, Eris y Haumea.

Los satélites son cuerpos mayores que orbitan los planetas; algunos son de gran tamaño, como la Luna, en la Tierra; Ganímedes, en Júpiter, o Titán, en Saturno.


Los asteroides son cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter, y otra más allá de Neptuno. Su escasa masa no les permite tener forma regular.

Los objetos del cinturón de Kuiper son objetos helados exteriores en órbitas estables, los mayores de los cuales son Sedna y Quaoar.
Los cometas son objetos helados pequeños provenientes de la nube de Oort.

Estrella central “el sol”:

El Sol es la estrella única y central del Sistema Solar; por tanto, es la estrella más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo terrestre determinan, respectivamente, el día y la noche.

La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, y es por ello la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos.

El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años, y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años.

A pesar de ser una estrella mediana, es la única cuya forma circular se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Casualmente, la combinación de tamaños y distancias del Sol y la Luna respecto a la Tierra, hace que se vean aproximadamente con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales).

Planetas:

Los ocho planetas que componen el Sistema Solar son, de menor a mayor distancia respecto al Sol, los siguientes:

Mercurio: Es el planeta del Sistema Solar más próximo al Sol y el más pequeño. Forma parte de los denominados planetas interiores o rocosos y carece de satélites. Se conocía muy poco sobre su superficie hasta que fue enviada la sonda planetaria Mariner 10 y se hicieron observaciones con radares y radiotelescopios.

Venus: Es el segundo planeta del Sistema Solar en orden de distancia desde el Sol, y el tercero en cuanto a tamaño, de menor a mayor. Recibe su nombre en honor a Venus, la diosa romana del amor. Se trata de un planeta de tipo rocoso y terrestre, llamado con frecuencia el planeta hermano de la Tierra, ya que ambos son similares en cuanto a tamaño, masa y composición, aunque totalmente diferentes en cuestiones térmicas y atmosféricas.
Tierra: Es un planeta del Sistema Solar que gira alrededor de su estrella en la tercera órbita más interna. Es el más denso y el quinto mayor de los ocho planetas del Sistema Solar. También es el mayor de los cuatro terrestres.
La Tierra se formó hace aproximadamente 4567 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida.
Marte: Es el cuarto planeta del Sistema Solar. Llamado así por el dios de la guerra de la mitología romana Marte, recibe a veces el apodo de Planeta rojo debido a la apariencia rojiza que le confiere el óxido de hierro que domina su superficie. Tiene una atmósfera delgada formada por dióxido de carbono, y dos satélites: Fobos y Deimos. Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como la Tierra) y es el planeta interior más alejado del Sol. Es, en muchos aspectos, el más parecido a la Tierra.

Júpiter: Es el quinto planeta del Sistema Solar. Forma parte de los denominados planetas exteriores o gaseosos. Recibe su nombre del dios romano Júpiter (Zeus en la mitología griega).

Se trata del planeta que ofrece un mayor brillo a lo largo del año dependiendo de su fase. Es, además, después del Sol, el mayor cuerpo celeste del Sistema Solar, con una masa casi dos veces y media la de los demás planetas juntos (con una masa 318 veces mayor que la de la Tierra y 3 veces mayor que la de Saturno).

Saturno: Es el sexto planeta del Sistema Solar, el segundo en tamaño y masa después de Júpiter y el único con un sistema de anillos visible desde nuestro planeta. Su nombre proviene del dios romano Saturno. Forma parte de los denominados planetas exteriores o gaseosos, también llamados jovianos por su parecido a Júpiter. El aspecto más característico de Saturno son sus brillantes anillos.

Urano: Es el séptimo planeta del Sistema Solar, el tercero en cuanto a mayor tamaño, y el cuarto más masivo. Urano es similar en composición a Neptuno, y los dos tienen una composición diferente de los otros dos gigantes gaseosos (Júpiter y Saturno).

Neptuno: Es el octavo planeta en distancia respecto al Sol y el más lejano del Sistema Solar. Forma parte de los denominados planetas exteriores o gigantes gaseosos, y es el primero que fue descubierto gracias a predicciones matemáticas. Su nombre fue puesto en honor al dios romano del mar —Neptuno—, y es el cuarto planeta en diámetro y el tercero más grande en masa. Su masa es diecisiete veces la de la Tierra y ligeramente más masivo que su planeta «gemelo» Urano, que tiene quince masas terrestres y no es tan denso.

 


Tiempo geológico:

El tiempo geológico del planeta se divide y distribuye en intervalos de tiempo caracterizados por acontecimientos importantes de la historia de la Tierra y de la vida. Como la edad de la Tierra es de aproximadamente 4600 millones de años, cuando se habla de tiempo geológico suele expresarse casi siempre en millones de años y siempre referidos a «antes del presente.


Unidades geocronológicas: Las unidades geocronológicas son unidades de tiempo basadas en las unidades cronoestratigráficas. Las unidades cronoestratigráficas dividen las rocas de la Tierra ordenadas cronológicamente, reflejando los principales eventos geológicos, biológicos y climáticos que han ido sucediéndose a lo largo del tiempo. Los nombres de las unidades cronoestratigráficas comparten el mismo nombre con las equivalentes geocronológicas, salvo que los nombres derivados de su posición estratigráfica relativa -inferior, medio y superior- se trasladan como temprano, medios y tardíos.

Unidades geocronométricas: Desde que se han podido datar las rocas con valores absolutos (en cifras expresadas en millones de años), se han ido ajustando con cierta precisión las dataciones de los límites de las unidades geocronológicas, dependiendo de los métodos usados. Todas las unidades geocronológicas -y por tanto sus equivalentes cronoestratigráficas- para las que han podido precisarse sus límites pasan a ser también unidades geocronométricas.